Projecting Effects of Climate Change on River Habitats and Salmonid Fishes:

Integrating Remote Sensing, Genomics, and Demography to Inform Conservation

Alisa Wade, Brian Hand, Brit Garner, Gordon Luikart (PI) May 2016

Partners

With particular thanks to:

- Jen Bayer (PNAMP) and Clint Muhlfeld, USGS
- Jeff Hard and Robin Waples, NOAA
- Nick Gayeski, Wild Fish Conservancy

Climate Change and Salmonids

Urgent Need

- Recent presidential task force report calls for federal agencies to consider climate change vulnerability in decision-making
- Salmonids are "canaries of climate change"
- Billions \$ spent on salmonid conservation; need guidance on the how and the where

Clean, Connected COLD Habitat

Integrating Remote Sensing, Genomics, & Demography

Habitat Genomics (Remotely Sensed)

Explosion of data Exciting time for conservation

Demographics

Abundance Life History Diversity

Capacity

Integrate as key elements of VULNERABILITY

Vulnerability: the degree to which a system is susceptible to, or Whether a species will be vulnerable to future climate depends on unable to cope with, adverse effects of climate change, including intersection of climate exposure (sensitivity)& adaptive capacity. climate variability and extremes (IPCC 2001).

Integrated = Correlated

Kovach et al. 2015 Global Change Biology

New science illustrates **bull trout** genetics correlate with climate & habitat variables

Allelic Richness correlated with:+ habitat quality & quantity- summer temperatures & flood frequency

Suggests we can use projections of climate change to predict changes in genetic variation

Integrated = Correlated

Hand et al. 2016 Molecular Ecology

New science illustrates **steelhead** genetics correlate with climate variables

Fst correlated with:summer temperatures+ winter precipitation

Suggests we can use projections of climate change to predict changes in genetic variation

Integrated = Complex

Wade et al. In Review Conservation Biology

New research into how habitat, demography, and genetics interact with climate across populations...

A given population may have very different levels of "stress" depending on stressor type

...and what that may mean for inference from CCVA.

A given population may be considered "relatively vulnerable" solely on the basis of the variables considered

Integrated = Putting it All Together

The Riverscape Analysis Project (RAP)

Web-based DSS for salmonid conservation

Data

- Expanded access to remotelysensed climate/habitat data
- Crowd-sourcing data

Tools

- CCVA tools
- Landscape genetic tools
 Guidance & Examples
- Best practices
- Worked examples

SALMON HABITAT 👻 VULNERABILITY ASSESSMENT 👻 LANDSCAPE GENETICS 👻 MONITORING RESOURCES 👻 CONTACT

The Riverscape Analysis Project (RAP) is being developed into a web-based GIS Decision Support System (DSS) for salmonid conservation, with funding made available from NASA (National Aeronautics and Space Administration). RAP offers flexible, user-friendly and scientifically robust datasets, tools and educational resources to aid in the decision-making process for salmonid conservation across North Pacific Rim (NPR) Rivers under a changing climate. Further, the RAP DSS provides critical GIS and modeling tools to extract and download remote sensing data, habitat classification and suitability rankings, (coming soon!) climate change vulnerability assessments, riverscape genetic analyses, and genetic and demographic monitoring in salmonids. The RAP DSS was originally based upon a robust classification (typology) of rivers and river habitats which is aimed at mapping habitat quality and abundance, as well as conserving the existing potential production of salmon and the rivers that they spawn and rear in. It also includes a growing database of empirically measured abundance and genetic diversity metrics, allowing for advanced planning, research and decisions-making in salmonid conservation.

Scient

News and Contacts

Latest News

January 2015 See recent publications using RAP tools and concepts

January 2015 See our new monitoring educational web page

January 2015 Check out new landscape genetics educational web page November 2014 New tools to extract

November 2014 New tools to extract Freeze/Thaw, Fractional Water, and Net Primary Productivity added.

November 2014 Performance of salmon fishery portfolios across western North

Web site currently being moved to a new platform to better integrate with PNAMP servers

Sponsors GORDON AND BETTY MOORE FOUNDATION

Data: Increased access

Subwatershed Extraction Tool

ءِ 🛞 👱

(1) Help

p Data Dictionary

ary Riverscape Analysis Project

8

One-stop shop for salmonid/aquatic habitat characteristics

Climate Data	RS Mission/ Product	Habitat Data	RS Mission/ Product
Freeze-Thaw Timing	NASA SSM/I, AMSR-E, SeaWinds-on- QuickSCAT NASA AMSR-E	Drainage Density, Amount, and Sinuosity	NASA SRTM & NHDPlusv2
		Floodplain Amount and Nodes (complexity)	NASA SRTM, Landsat TM, NDVI
Open Water		Disturbance: NOAA	NASA GRUMP, GPWv3, DMSP, Landsat (NLCD)
Air Temperature, Precipitation, Runoff	NASA NEX-DCP 30	CHAMP, Human Footprint, and NLCD 2011	
NorWeST Stream Temperature	NASA Landsat TM & NAIP	Channel and Valley Slope	NASA SRTM
USFS Stream Flow	n/a	Others: Glaciers, Dams, Elevation, Waterbodies	various

Data: Crowd Sourcing

- Network of 7 agencies as data crowd-sourcing partners
- Training biologists and citizens on eDNA sampling for presence/ absence and abundance of native salmonids and invasive aquatic organisms
- Training biologists on DNA fin clipping to minimize effects on fish

Tools: User-Friendly CCVA Tool

Tools: Landscape Genetics Tool

Genetic Tools for Demographic Monitoring

- Diversity and abundance within
- Connectivity between
- AgeStructureNe simulation, power analysis and prediction
- NbSampler estimation of Nb and required empirical sample sizes

Tools \rightarrow Research Garner et al. in prep.

Impact of environmental factors on the effective number of breeders (Nb) for steelhead trout in the Snake River system

Tools applicable to all species, not just salmon

Allow managers to monitor populations and build predictive models – what is driving vulnerability?

Courtesy of Mike Ackerman and IDFG

Guidance

Worked Examples

Climate change scenarios of steelhead survival in the Puget Sound Jeff Hard NOAA & Phil Sandstrom WDFW

- NOAA-developed life cycle model to estimate steelhead abundance
- Two-stages: ocean & freshwater
- Freshwater productivity = $f(S, \alpha, \beta)$
 - S = number of spawners
 - α = number of recruits per spawner

β = habitat capacity modeled based on "intrinsic potential" of habitat

 β "intrinsic potential" currently on basis of river slope and width

1: Improve β with remotely-sensed data of habitat quality characteristics

2: Compare scenarios of stream temperature change

Best Practices

CCVA Pseudo to Science Wade et al. in prep

- Improving rigor in species' CCVA
- CCVAs as untested hypotheses
- Accounting for uncertainty
- Methods for validation

Thanks!

Fish Commission

science for a changing world

Integrating remotely-sensed, demographic, & genomic data Integrating data, tools, & support

for salmon conservation

Current eDNA sampling sites

Partners

- Clearwater
 Resource Council
- Flathead Basin
 Commission
- NPS
- Swan Valley Connections
- USFS
- USGS
- Whitefish Lake Institute

